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Integral constraints are derived for steady recirculating flows of nearly in- 
compressible fluids, arising from the action of a small amount of viscosity and 
heat conduction. These constraints are then combined with the inviscid non- 
diffusive incompressible flow equations to show that two-dimensional flows con- 
taining closed nested streamlines, or three-dimensional flows with closed nested 
stream surfaces, are isothermal. In the former case it is shown that the vorticity 
is constant, and in the latter case there is an analogous result when the flow is 
axially symmetric and confined to axial planes. For a circular cell free convection 
problem, the interior temperature and vorticity are determined from the 
boundary conditions by an approximate integration of the boundary layer 
equations. 

1. Introduction 

incompressible fluid are 
The equations governing the steady laminar motion of an inviscid non-diffusive 

divu = 0 ,  ( 1 . 1 )  

puxw-(&q2+IR)p/?VT-VH = 0, (1.2) 

u.VT = 0, (1.3) 

where IR is the gravitational potential and all the other symbols have their 
usual meanings (and are defined in the remarks following equations (2.3) and 
(2.9)). Except in the neighbourhood of certain singular stream surfaces, it will 
be assumed that these equations are valid as the Reynolds number approaches 
infinity (the Prandtl number is O( 1)) ;  in addition, the usual conditions that the 
fluid be incompressible are assumed to hold, viz. the Mach number is small, the 
length scale of the velocity field is small compared to the ‘scale-height’ of the 
atmosphere, and the variations of density due to viscous dissipation or heat 
conduction are small. 

It is well known that equations (l . l) ,  (1.2) and (1.3) are not sufficient to allow 
the velocity distribution to be determined from the specification of the normal 
velocity at  prescribed boundaries. Indeed both T and H ,  which are constant along 
streamlines, may vary arbitrarily from one streamline to another. This in- 
determinacy can be removed when all the streamlines come from a region 
where both u and Tare known (e.g. from a uniform state far upstream). However, 
for recirculating flows this method is not available. For flows with closed stream- 
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lines, we follow an approach due to Batchelor (1956), who considered fluids of 
a priori constant density, and consider the action of a small amount of viscosity 
and heat conduction; two integral constraints are obtained, which hold uniformly 
as the Reynolds number increases, and in the cases of two-dimensional flow, and 
axially symmetric flow without a swirl velocity, these constraints render the 
distribution of T and H determinate. In the two-dimensional case it is found that 
both the temperature and the vorticity are constant in a flow region containing 
nested closed streamlines, with analogous results in the axially symmetric case. 
For flows where the streamlines are not necessarily closed, but there exist closed 
stream surfaces, we adapt an idea due to Wood (1965), who considered fluids of 
a priori constant density, and again obtain two integral constraints. For a flow 
region containing nested, closed stream surfaces these constraints show that the 
temperature is constant, but are, in general, insufficient to determine completely 
the vorticity distribution. 

In 5 2 the integral constraints for closed streamline flows are derived, and in 
5 3 these are applied to the two-dimensional case. To determine the values of 
the constant temperature and vorticity in the inviscid, or core region, an appeal 
must be made to the boundary layer equations which hold in the vicinity of the 
singular streamline bounding the flow region. An approximate method of dealing 
with these equations which enables the core temperature and vorticity to be 
determined is outlined, and applied to a circular cell free convection problem, 
posed by Carrier (1953). In  9 4 the integral constraints for flows containing closed 
stream surfaces are derived, and are appIied to show that the core region has 
constant temperature, and that the stream surfaces are, in general, toroidal. 

2. Derivation of integral constraints 
We shall derive certain integral constraints for the steady recirculating flow 

of a fluid which is nearly inviscid, non-diffusive and incompressible. The equations 
of motion are div(pu) = 0, (2.1) 

(2.2) 

(2.3) 

pu x w + (*a2 + Q) V p  - V H  = -p($ grad div u - curl w),  

~ T u  . V S  = kV2T + @, 

where p, u, T, S are the density, velocity, temperature and entropy respectively 
of a fluid particle; w = curlu, q = IuI and H = &pqz+p +pi2 is the local 'total 
head' in the fluid, where p is the pressure and Q is the gravitational potential; 
,u is the coefficient of shear viscosity and k the thermal conductivity, and both 
are assumed constant; finally @ is the viscous dissipation function. The flow is 
characterized by a length scale L, a velocity scale U ,  a density scale p,, a tempera- 
ture difference scale AT,, and a local speed of sound scale c,; from these we form 
the dimensionless parameters 

M 2  = U'Icf, F = U2/Lg, R = po ULIp, E = Ua/ic,AT0, v = pcp/k ,  (2.4) 

where g is the acceleration due to gravity, and cp is the specific heat at  constant 
pressure and is assumed constant. We shall assume that the Prandtl number g 
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is 0(1), which is the case for most common liquids and gases. The parameters 
M2, M2/F,  1/R and E are all assumed to be small, and are taken as zero in the 
inviscid non-diffusive incompressible limit. 

In  the energy equation (2.3) the viscous dissipation function CD is O(E) com- 
pared to the heat conduction term kV2T, and will henceforth be neglected; indeed 
the Eckert number E is O((T,/AT,) M 2 )  where To is a temperature scale and, for 
the length scales encountered in a laboratory, is usually much smaller than 1/R 
(for the length scales encountered in the atmosphere E could be O(l/R)). We 
suppose that V is a closed streamline; then from (2.3) 

and as S is single-valued, the integral on the left vanishes. Hence, for each 
closed streamline %?, we have the integral constraint 

which holds for any non-zero value of k. If the streamline remains closed as the 
non-diffusive limit is approached, and remains in the region within which this 
limit is valid, then the constraint (2 .6 )  holds also in this limit. 

To obtain a condition on the vorticity distribution, analogous to (2.6)) we will 
assume that the fluid is a pr ior i  incompressible (i.e. div u = 0). The fluid will be 
nearly incompressible when the parameters M 2 ,  M2/F  and (ATo/To) (1/R) are all 
small (e.g. Batchelor 1967, 3 3.6); here we assume that these parameters are not 
only small, but small compared with 1/R (this is the case for most liquids, and for 
most gases when the length scale is that typically encountered in a laboratory). 
The equations of motion become: 

divu = 0, (2.7) 

(2.8) 

(2.9) 

pu x w - (+q2+ Q)ppVT -VH = pcurl w, 

pcP u . V T  = kV2T, 

where we are again ignoring the viscous dissipation function a; here, ,8 is the 
coefficient of thermal expansion (assumed constant) and we have used the thermo- 
dynamic equation of state 

Vp+pPVT = 0, 

which is valid under the conditions of incompressibility given above. Equations 
(2.8) and (2.9) imply that 

(2.10) 

p ( t q 2  + Q) (P/a) V 2 T  + u . V H  = -pu . curl w, (2.11) 

and integrating around the closed streamline %', we obtain 

(2.12) 

as H is single-valued. Now cr is O( l), and further is a fluid property; thus, if the 
streamline remains closed as 1/R -+ 0 (i.e. as k, p --f 0) ,  and remains in the region 
where this limit is valid, then the constraint holds also in this limit. I n  practice, 
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the term containing q2 is much smaller than either of the other two terms, and 
may be omitted. However, the term U. curl w is O(ATo/To. 1/F) compared with 
PQV2T, and so these two terms are usually comparable. 

We have been unable to  obtain a condition analogous to (2.12) when the fluid 
is a priori compressible. Although (2.2) may be written in the form 

pu x w +pTVS-pV(&q2 + Q+ E +p/p )  = -,u(Qgraddivu - curlw), (2.13) 

where E is the specific internal energy of a fluid particle, so that, using (2.3) with 
Q, omitted, 

, u . c ~ / ~ V 2 T - P u . V ( g q 2 + ~ + . + + p / ~ )  = -pu.($graddivu-curlw), (2.14) 

we must now reject the term on the right-hand side of (2.14) as it is O(E) com- 
pared with the first term on the left-hand side. Our procedure then yields a 
condition indistinguishable from (2.6) in the non-diffusive limit. 

3. Two-dimensional flow with closed streamlines 
In  the inviscid non-diffusive incompressible limit the equat.ions of motion 

become (1.1), (1.2), (1.3) and (2.10). When the flow is two-dimensional we can 
introduce a stream function 11., and use ( + , f ; )  as orthogonal curvilinear co- 
ordinates where the curves t = constant are everywhere orthogonal to stream- 
lines. The displacements corresponding to increments in @ and 6 are d$/q and 
h dg where h is unknown. Then equation (1.3) implies that  T is constant on stream- 
lines (and also p is constant on streamlines), and so T = T($). 

We suppose that the flow region, for which the limit Ic, ,u +- 0 applies, contains 
a set of closed nested streamlines whose inner boundary is merely a point. Then 
the constraint (2.6) implies that 

Assuming that q is finite everywhere, we integrate to find that 

dT 
- = 0 and T = T,(constant) 
a@ 

(3.1) 

everywhere in the flow region. From (2.10) it follows tha t  the density is also 
constant everywhere. Then equation (1.2) implies that H is constant on stream- 
lines and so H = H(@) ,  whence pw = dH/d@ where w is the component of vor- 
ticity normal to  the flow region (and is the only non-zero component). Assuming 
that the constraint (2.12) obtains, we see from (3.2) that the left-hand side 
vanishes, and it follows that (as in Batchelor 1956) 

(3.3) 

Hence the vorticity is constant everywhere. 
The condition (3.2) has been previously obtained by Burggraf (1966), under 

the assumption that the fluid is a priori of constant density; he used an integral 
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constraint obtained from (2.9), and rejected the contribution from the dissipation 
function by assuming that the flow was a perturbation of a solid-body rotation. 
Weinbaum (1964) also obtained the condition (3.2);  he used the integral con- 
straint of zero heat flux across each closed streamline. 

The value of the constant To (and of the constant vorticity w,) is undetermined 
as yet, and clearly cannot be determined from a consideration of the inviscid, 
non-diffusive region, or core region, alone. We shall assume that the core region 
is surrounded by a singular streamline, go, on which the temperature and velocity 
are specified, and in the neighbourhood of which the limit k, ,!L + 0 applies. If go 
is the streamline $ = 0, the core equations are 

T = To, Vz$= wo where $ =  0 on $7,. (3.4) 

We let q,, denote a$/an Ilo, which is the velocity on go determined from the solu- 
tion of (3.4) (n is the outward normal to $7,). These equations are to be supple- 
mented by boundary layer equations in the vicinity of Vo. Since a is O(l) ,  the 
velocity and thermal boundary layers are of comparable depths, viz. O(L/,/R) 
where L is a typical dimension of %,,. We shall write these equations in their 
intrinsic form (q.v. Howarth, 1969, $0 3 and 27),  

where a,, h, are the values of a, h respectively on V,, and v is the kinematic 
viscosity u/po. Then if %? is a closed streamline, lying within the boundary layer, 
we obtain from the integration of (3.5) and (3.6) 

It would seem that, before we can integrate (3.7) and (3.8), the boundary-layer 
equations (3.5) and (3.6) must be solved. Being unable to do this exactly, we 
linearize these equations by replacing the q on the right-hand side by cq,, where 
c is a constant to be determined (applied to (3.5) with T = To and c = 1, this is 
the KBrmBn and Millikan approximation). Making the same change in (3.7) and 
integrating, we obtain 

fw h, q,, T d t  = constant, (3.9) 

where one constant of integration has been evaluated by taking V at the outer 
edge of the boundary layer. Evaluating (3.9) on V,, and on the outer edge of 
the boundary layer, we obtain, to the accuracy of the boundary layer approxi- 
mation, F F 

(3.10) 
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When the same approximation is used on (3.8)’ it may also be integrated to yield 
the condition 

Equations (3.10) and (3.11) allow To and wo to be determined from the prescribed 
values of T and q on Vo. 

yo 

FIGURE 1. Geometry of the circular cell convection problem. 

The procedure will be illustrated by considering free convection in a circular 
cell, a problem introduced by Carrier (1953) and discussed in detail by Weinbaum 
(1964). Using the polar co-ordinates ( r ,  0) as described in figure 1, the prescribed 
conditions on the boundary r = a, are u = 0 and T = Tl+ATocos (8+Q) for 
0 < Q < in. Then the solution of (3.4) is the solid-body rotation 

Hence 

$ = awo(rz - a2). 

qo = +woa. 

(3.12) 

(3.13) 

Equation (3.10) shows that To = Tl (an obvious conclusion in this problem), 
and (3.11) then shows that 

(3.14) 

Weinbaum treated this problem by using a ‘modified’ Oseen linearization on 
the boundary layer equations. For the case # = in, he finds that wo is 114 2 times 
the value given by (3.14) in the ‘classical’ Oseen approximation, and a factor 
of at least two greater than this in the ‘modified’ Oseen approximation. Equation 
(3.14) implies that wo -+ 0 as q5 + 0;  as this result is incompatible with the 
assumption of a non-trivial core motion on which our theory is based, the case 
# = 0 must be excluded. However, Weinbaum’s analysis also predicts that 
wo = 0 when q5 = 0, and further evidence that the core is stagnant when Q = 0 
is provided by the experiments of Elder (1965) on the side-to-side heating of 
a vertical rectangular slot, although he used a Prandtl number considerably 
larger than that envisaged here. (Gill (1966) has given a theoretical analysis of 
this problem, and Elder (1966) has given a numerical analysis.) Clearly, when 
the core is stagnant, the core temperature need not be uniform; indeed Elder 
found a constant vertical temperature gradient. Fromm (1965), Burggraff (1966) 



Xteady recirculating flows 701 

and Robinson (1967) have each given numerical studies of convection in rect- 
angular cells; for non-stagnant cores their calculations would appear to confirm 
that the core region is one of uniform temperature and vorticity. 

For a steady, axially symmetric flow without azimuthal swirl, so that the 
flow takes place in axial planes, a very similar treatment to the preceding may 
be given. Indeed, if there is a flow region containing a set of closed nested stream- 
lines, and for which the limit k, ,u + 0 applies the condition (2.6) implies that the 
region is one of constant temperature. If the constraint (2.12) also obtains, then 
it follows (Batchelor 1956) that the vorticity is a linear function of distance from 
the axis of symmetry. 

4. Flow with closed stream surfaces 
A recirculating flow is unlikely to possess a set of nested, closed streamlines 

unless it possesses some special symmetry, such as that imposed by assuming 
that the flow is two-dimensional, or axially symmetric without a swirl velocity. 
We therefore characterize the flow as one containing a nested set of closed stream 
surfaces, and seek constraints analogous to (2.6) and (2.12) for such a flow. 
Each closed stream surface Y is specified by the parameter a (e.g. the volume 
enclosed by 9). Then equation (2.3)) with the dissipation function CD omitted, is 
integrated over the volume V between two closed stream surfaces, Yl and Y2 
(Y2 containing 9,) : 

k J y 3 V  = ssy, Spu . n dA -/I9, Spu . n dA,  (4.1) 

where n is the outward normal, and we have used the equation div(pu) = 0. 
The right-hand side of (4.1) now vanishes as ,yI, Y2 are stream surfaces, and 
differentiating the left-hand side with respect to a, we obtain the integral 
constraint 

which holds for any non-zero value of Ic. If the stream surface remains closed as 
the non-diffusive limit is approached, and remains in the region where this limit 
is valid, then the constraint (4.2) holds in this limit also. In the non-diffusive, 
incompressible limit the constant temperature surfaces (which may also be 
identified as constant entropy surfaces in this limit) are also stream surfaces 
by (1.3). It will be assumed in the sequel that the surfaces Y become constant 
temperature surfaces as k --f 0. An alternative method of characterizing the flow 
is to assume that the surfaces 9 are, a priori, constant entropy surfaces, and 
become stream surfaces only in the limit k --f 0. Then (4.1) still holds, and if 
there are no sources or sinks in the volume enclosed by any 9, then the right-hand 
side again vanishes, and (4.2) still holds. 

In  either case, T = T(a)  in the non-diffusive, incompressible limit. We let 
ql, q2 be co-ordinates on Y ,  so that (4.2) becomes 
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where 73 = a, grs are the contravariant components of the metric tensor of the 
co-ordinate system (rl, q2, 73), and q-l = det [g'"]. Since Y is a closed surface 
ql, q2 are periodic co-ordinates, and there is no contribution to the integral 
from r = 1 or r = 2. Hence (4.3) becomes 

- 0 and T = To (constant) (4.5) 
d T  - - 
da 

and so we find that 

everywhere in the flow region (which is now assumed to have no inner boundary). 
From (2.10) it follows that the density is also constant everywhere. 

Next, we seek a constraint on the vorticity distribution analogous to (2.12). 
As in 0 2,  the fluid is again taken as apriori incompressible, and if V is the volume 
between two closed stream surfaces and Y2, we obtain from (2.11) 

H u . n d A + / /  H u . n d . 4 .  (4.6) 
9, 

As above, the right-hand side of (4.6) vanishes, and so 

which holds for any value ofp, and under the conditions given above, holds also 
in the limit ,u -+ 0. In  this limit the constant H surfaces are also stream surfaces, 
and it will be assumed that the surfaces become constant H surfaces as ,u + 0. 
Alternatively, following Wood (1965), we may assume that the surfaces Y are, 
a priori, constant H surfaces, and become stream surfaces only in the limit 
,u -+ 0. Then (4.6) and (4.7) still hold, if there are no sources or sinks in the volume 
enclosed by any 9. 

If, in the non-diffusive inviscid incompressible limit, it is assumed that the 
constant H surfaces are also constant temperature surfaces (this is the case, 
e.g. if the fluid was initially at rest q.v. Yih (1965), chapter 1, § 5 ) ,  then it follows 
from (4.5) that  the left-hand side of (4.7) is zero. Then, since 

u w = we, (4.8) 

where Ye = H / p ,  = &(a), we have 

Hence (4.10) 

where V is the volume enclosed by Y.  Thus if the flow is genuinely rotational, 
so that the left-hand side of (3.10) is nowhere zero, it follows that VAf is nowhere 
zero, and the flow has no stagnation points. Then since the stream surfaces are 
smooth, and bounded, it follows from well-known theorems of topology (e.g. 
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Alexandroff & Hopf, 1935, ch. XIV, $4) that9’is a toroid (i.e. topologicallyequiva- 
lent to a torus). This observation was made by Kruskal & Kulsrud (1958) in the 
context of the magnetostatic equations. Equation (4.10) provides one condition 
to determine the two vorticity fluxes (azimuthal and longitudinal) within the 
toroid. In  general, therefore, a second condition is needed, analogous to that 
obtained by Wood (1965) for a fluid of a priori constant density. 

The Euler equation (3.8) has recently received extensive discussion in the 
literature on the static equilibrium of conducting fluids (for a recent survey, 
q.v. Grad 1967). Indeed if u is identified as the magnetic field, w as the electric 
current density, and 3 as the fluid pressure, then there is an exact analogy with 
the equations describing static equilibria of plasmas. In  seeking existence 
theorems for these equations, it has been found necessary to  solve ‘magnetic’ 
differential equations of the type 

u . V r  = s (4.11) 

on a toroid, where u, s are given and r is to be determined. Grad (1967), using 
a lemma of Moser’s, has shown that a necessary and sufficient condition for the 
existence of a smooth, possibly multi-valued r is that s(dl/q) be a function of a 
only for each closed streamline lying on a given toroidY (see also Newcomb 1959 
and Hamada 1962). Grad has suggested that this condition is implausible, and 
that, except for geometries of special symmetries, the Euler equation (3.8) has 
no smooth solutions on toroidal stream surfaces. If this conjecture is correct, 
it would imply that, in general, there are no steady, inviscid flows with toroidal 
stream surfaces. 

It is a pleasure to record many interesting discussions with Dr W. W. Wood, 
who has stimulated my interest in this topic. 
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